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Electronic-Structure Study of the Ni-Ga and Ni-In Intermetallic Compounds

Using X-ray Photoemission Spectroscopy

Lishing Hsu, Barakat Alavi,
Department of Physics and Solid State Science Center,
University of California, Los Angeles, California 90024
and
David K. Shuh and R. Stanley Williams
Department of Chemistry and Biochemistry and Solid State Science Center, University of

California, Los Angeles, California 90024-1569

Polycrystalline Na-Ga and Ni-In intermetallic compounds of various stoichiometric
compositions have been examined by x-ray photoemission spectroscopy. The observed valence-
band spectra for all the compounds are very similar to those for elemental Ni; those for Ni;Ga
and Niln agree rather well with the band-structure calculations of Kubo et al. [J.Phys., F17, 397
(1987)] and Collinet ez al. [Z. Metallkd. 77, 798 (1986), respectively. Only a partial filling of the

empty Ni 3d states occurs on forming compounds with Ga or In.




I. INTRODUCTION

The electronic structure of the nickel-metalloid intermetallic compounds has attracted
considerable attention in recent years because of their possible application as contacts to III-V
semiconductors! and their interesting many-body effects compared to elemental Ni.23 The Ni-Al
system has been studied by several groups using x-ray photoemission spectroscopy (XPS)4'7 and
ultraviolet photoemission spectroscopy (UPS).8 Their results are summarized as follows: with
increasing dilution of Ni, (i) the Ni d-band centroid moved to higher binding energy (BE) and the
density of states (DOS) at the Fermi level (Eg) decreased; (ii) the Ni d-bandwidth narrowed and the
core-level lineshape was more symmetric; and (iii) the satellites in the XPS valence band (VB) and
core-level spectra decreased in intensity and shifted to higher BE. The conclusion drawn from
these results was that the Ni d-bands were being filled in compounds containing a progressively
greater proportion of Al. This filling was assumed to be the result of hybridization of the Ni d-
band with the Al sp-band, rather than by actual charge transfer.5 However, an X-ray emission
study has shown that the filling of the 3d-band in NiAl is not completc.9 In addition, some
intensity was always observed at the BE of the Ni 2p XPS satellite in the nickel aluminoids,
which was interpreted by Hillebrecht er al.” as evidence for d-character in the unoccupied states of
all the compounds. Studies of the 3d-transition-metal/polyvalent-metal compounds and alloys,
such as (Fe, Co, Ni),Al,, and Co,Ga,_,, have confirmed that the main factor governing the
electronic structure of these systems is the short-range mixing between the d-states of the transition
metals and the sp-states of the polyvalent metals. 10

Recently, a resonant ultraviolet photoemission study2 on NiGa showed that the resonantly
enhanced VB satellite has about the same intensity as that in elemental Ni, which indicated that T
the above interpretation by Hillebrecht ez al.’ for the Ni-Al system may also be applied to the .
Ni-Ga system. Since Al, Ga, and In have the same electronegativity value!! of 1.5, the Ni-Ga ' O

and the Ni-In compounds should be similar to the Ni-Al compounds in all their electrical ———

properties. In this study, the XPS spectra of the VB and core levels of all the known compounds /

e ———
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in the Ni-Ga and Ni-In systems have been investigated to determine if this is indeed the case.
The next section of the paper describes the experimental procedure. The experimental results are
presented in Sec.IIl and discussed in Sec. IV. The conclusions drawn from this investigation will

be found in Sec. V.

II. EXPERIMENTAL PROCEDURE

The elemental Ni sample used in this study was polycrystalline foil 6um thick and 99.95%
pure obtained from Johnson Matthey, Inc. The Ni-Ga and Ni-In intermetallic compounds12
studied here were prepared by arc melting the constitutes together in the required proportions under
about 1 atm clean argon in a water-cooled copper hearth. The metals used were of 99.99% purity
or better, as specified by the supplier, Johnson & Matthey, Inc. The resulting buttons were
remelted five times and, to increase the homogeneity of the samples, were annealed in evacuated
quartz tubes at various temperatures. During these processes the total loss of weight was less than
2% for all the samples.

X-ray powder diffraction (XRD) patterns of all the compounds were collected with a
Philips diffractometer that utilized Cu Ka radiation. Diffraction patterns were obained by signal
averaging for twelve hours to schieve an adequate signal-to-noise ratio to identify minority phases
in the materials. From the XRD patterns, most samples contained a single phase, except that the
nominal Ni;Ga, and Ni,Ga; compounds were actually mixed phases of each other with about
50:50 composition, and the Ni,Ga; sample contained ~10% of secondary phases.

The XPS spectra were collected with a Kratos ES 800 spectrometer, featuring non-
monochromated Al Ko radiation (h"=1486.6 eV) in ultrahigh vacuum (base pressure ~ 5 x10-10
Torr). The total experimental resolution was estimated to be about 1 eV. The samples were
cleaned by cyclic Ar* (3, 2, and 1 kV, 20 mA) bombardment and annealing to 500°C. Although
ion bombardment could produce a change of composition or even phase within the XPS sampling

depth (~20A) via preferential sputtering, subsequent annealing should equilibrate all but the outer
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one or two multilayers with the bulk. The XPS spectra were collected with the sample normal
pointing into the electron energy analyzer to minimize surface contributions to the spectra. The
relative intensitites of the Ni and Ga 3d or In 4d XPS lines were measured, and the compound
composition within the photoelectron emission depth after ion bombardment and annealing was
calculated by using theoretical cross sections.!3 This calibration agreed with the starting weight of
the elements in each sample to within 8% and 19% in the worst cases for the Ni-Ga and Ni-In
systems, respectively.“ The level of contamination was estimated from the intensity of the O 1s
and C 1s XPS peaks relative to the Ni peaks and Scofield's calculated photoemission cross

15

sections. The combined O and C contamination on surface was 3 at. % for Ni foil and less

than 1 at. % for Ni-Ga and Ni-In compounds in the XPS sampling depth.

III. RESULTS

The XPS spectra presented here are normalized to the same height of the peaks of interest
after subtraction of a smooth background14 and of Al Ka; 4 satellites. In Fig. 1, XPS VB spectra
for elemental Ni and the Ni-Ga intermetallic compounds are presented, while those for Ni metal
and the Ni-In intermetallics are shown in Fig. 2.

When a core-level BE is to be measured in a solid, this BE must be defined with respect to
some tangible reference level. In a metal, the most easily accessible reference level is the Fermi
level, Ez. Unfortunately, when pure metals with different work functions are alloyed, Eg (with
respect to the vacuum level, E,) also shifts by a magnitude often comparable to the observed core-
level shifts.!” A particular core level may not shift at all with respect to E, upon alloying, but
may exhibit a pronounced shift as observed with respect to Eg. At present, however, there is no
single measurement capable of referencing the XPS core levels to E,. Therefore, the reference

1819 canbea major difficulty both experimentally and conceptually. In this study,

level problem
the BE's are referred to Eg, which can be assigned as the 50% point on the high-energy cutoff

side of each VB spectrum. Another way of locating Eg is assuming that the instrument and

4




lifetime broadening function is a Gaussian with a full width at half maximum (FWHM) of 1.4 eV,
to move from the 12% point on the high-energy cutoff side to the point at higher BE by one-half
of the FWHM of the broadening function. The difference in Eg values determined by these two
methods for all the VB spectra presented here are within 0.2 eV. In the present study, the latter
method is employed to determine Eg's for all the spectra. The band positions thus determined and
the d-band widths are given in Table 1.

Since the Ga and In valence states have low photoemission cross sections in the x-ray
region,15 the VB spectra are dominated by the peak from the Ni d-band. The centroid of this
dominant feature is observed to move slightly away from Eg as the proportion of Ga or In in
the compounds increases. The widths of these VB spectra are not easily quantified because of the
long tails to high BE and, as a consequence, no obvious band narrowing compared with pure Ni
was found. This is in marked contrast to the case of PtGa, compared with elemental Pt, for
which the VB of the compound was less than half the width of the Pt VB.2 The VB satellite,
which is located at ~6 eV below Eg, is less intense for the compounds than for pure Ni, and for
compounds with lower Ni concentrations these satellites are not observable.

The Ni 2p3, core peaks and associated satellites for elemental Ni and Ni-Ga compounds
and those for elemental Niand Ni-In compounds are displayed in Fig. 3 and Fig. 4, respectively.
These core-level spectra have been shifted to align the Ni 2p;, main peaks, for which the BE's
are summarized in Table II, along with the corresponding satellite positions and intensities. Also
shown in Table II are the corresponding values for Ni 2p,,, levels and satellites in the intermetallic
compounds studied here. The main 2p lines become narrower and more symmetric as the Ni
concentration decreases in the compounds and, at the same time, the satellite separation from the
main core peak increases. The satellite intensity for the Ni 2p;,, level, which was determined in

d16

the same way as was done in Ref. 7 except a "smooth" (rather than linear) background™™ was

subtracted, decreases with increasing dilution of Ni, but such a trend is not obvious for the




Ni 2p,, level. There appears to be no or only small (<0.2 eV) chemical shifts for the Ni 2p

levels.

IV. DISCUSSION

Of the compounds studied here, Ni;Ga and Niln are the only ones for which the density of
states (DOS) have been theoretically calculated. These two compounds were therefore chosen as
prototypes in the Ni-Ga and Ni-In sytems, in order to compare our XPS data with band structure
calculations. To compare them with the XPS spectra, the theoretical DOS were broadened with a
Gaussian of 1.4-eV FWHM to simulate instrumental and life-time broadening effects. The
broadened DOS and the XPS VB spectra, along with the original DOS, for Ni3Ga and Niln are
shown in Fig. 5 and Fig. 6, respectively.

The electronic band structure of Ni;Ga was first calculated by Fletcher?! using Hubbard's
method in a non-self-consistent scheme. More recently, self-consistent calculations were carried
out by Hayden ez. al.,22 using the linear muffin-tin orbitals (LMTO) method, and by Kubo and
Wakch,23 using the symmetrized augmented plane waves (SAPW) method. The latter calculations
showed that the one-electron d-band width of NiyGa is narrower than that calculated by Fletcher.
Our FWHM of the XPS VB of Ni3Ga (3 eV) agrees with the theoretical value of Kubo and
Wakch (~2.9 eV). The dominant feature in the Ni;Ga XPS VB spectrum arises from electrons in
the non-bonding Ni d-orbitals. The bonding states, which form from the hybridization of Ni 3d
and Ga 4p electrons, are not resolved separately in the XPS spectrum.

Colinet et. al.,?* using the cluster Bethe lattice method, calculated the DOS of Niln
stoichiometric compound. In their calculation, strong sp-d hybridization produces a pseudogap at
the top of the d-band. In Fig. 6, the peak in the DOS located just below the pseedogap is caused
by the very weakly coupled d-states, while the strongly mixed d-sp-states are characterized by the
higher binding energy peak and by the group of states that lie above the pseudogap. The XPS VB

spectrum agrees quite well with the broadened DOS curve from this calculation. However, the
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higher binding energy peak is not resolved in the XPS spectrum, and the total d-bandwidth is
underestimated by the calculation. This underestimation of the theoretical bandwidth compared to
the XPS data of Niln was also noticed by Hillebrecht er al.” in their XPS data of Niln and
band-structure calculation, in which they used the augmented spherical waves (ASW) method.
This indicates that the disagreement between theory and experiment for the bandwidth of Niln is
independent of the theoretical methods used.

An important point to note is that all of the above band-structure determinations were one-
electron calculations. Since the 6-¢V satellite peaks observed in the XPS VB spectra do not show
up in the theoretical DOS curves of Ni;Ga and Niln, these features are most likely the result of
many-electron transitions. For both the Ni3;Ga and the Niln cases, there is considerable
photoemission intensity in the 6- to 8-eV binding energy regions of the spectra that is not present
in the theoretical DOS calculations.

Because the DOS at Eg (n(Ep)) in pure Ni is one order of magnitude higher than n(Eg) in
pure Ga and In2 a decreasing Ni concentration causes a decrease of n(Eg) in the compounds

6.7 it was possible to correlate a decrease in XPS intensity at Eg for

studied here. In other studies,
many Ni alloys with a decrease in the electronic specific heat and the n(Eg) value. Unfortunately,
NiyGa is the only compound studied here for which the specific-heat data are available. The
n(Ep) values in states/eV-atom obtained from theoretical calculations (1.36, 1.56, 1.61 in Refs. 23,
22, 21, respectively) are substantially lower than those obtained from specific-heat measurements
(2.54, 3.54, 4.13, in Refs. 26, 27, 28, respectively). Since the experimental data were not
corrected for the electron-electron and electron-phonon mass enhancements in deriving n(Eg)
values, this discrepancy may be caused by the enhanced magnetic fluctuations®® in Ni;Ga, which
were also observed>C in Ni;Al. Choosing the experimental n(Eg) value of 2.54 for Ni;Ga
(Ref.29) and comparing it with the value of 2.97 for Ni (Ref.31) yields an 85% decrease in this

value from Ni to Ni;Ga, which is comparable to the 76% decrease in the XPS intensity at Eg

relative to the maximum of the d-band.




The I, value (satellite intensity as a percentage of total intensity of main line plus satellite)
for the Ni 2p;p; level in Ni metal in this study is 19%, which is much smaller than those reported
previously by Hillebrecht et al. (29%),” Stadnik et al. (29%),32 and Kulkarni ef al. (27%).33
However, there are two I, values in the literature that are close to the value obtained in the present
study. One is that of Torrisi et al3* (I;4~18%) for a Ni strip, and the other is that of Thube er
al. 3 (1,,,~20.4%) for a Ni foil. In order to see the effect of data analysis on the I, value,
various methods have been used in analyzing our Ni film data, including a linear background
subtraction with or without subtracting the Al Ka; , satellite. A maximum value of I, =21% was
obtained. One point worth noting is that our I, values (within the uncertainty of 2%) for Ni 2p;,,
levels in Niln and Ni;Al are the same as those reported in Ref. 7. We do not understand the origin
for this discrepancy among I, values (for the Ni 2p;j, level of elemental Ni) reported so far.
However, accepting our I, value for Ni metal, one does not observe a "sharp” decrease in theNi
2psp satellite intensity with decreasing Ni concentration in the Ni-Ga and Ni-In systems. For
narrow-band metals, the satellite intensity depends not only on the number of empty d-states but
also on the d-bandwidth, the intra-atomic Coulomb interaction, and the detailed band structure.3
Thus, it is difficult to extract quantitative conclusions from the I, value concerning the d-band
filling in these compounds. Qualitatively, it appears that the Ni empty d-states are filled
incrementally when they are forming Ni compounds with increasing amounts of Ga or In. In
agreement with the resonant photoemission study2 of NiGa, this study showed that the Ni 3d-
band in the Ni-Ga and Ni-In compounds is only partly filled, even at the highest metalloid
concentrations.

Although there is no fully satisfactory quantitative theory for dealing with correlation
effects within the d-band,3” several theoretical studies using the Hubbard model3® identified the
XPS core-level satellites of Ni as a two-hole bound state, which is the result of a photoemission
event that leaves a localized 3d hole on the site of a previously existing core hole. There are no

corresponding satellites on the high BE side of the Ga 3d or In 4d XPS peaks, from which one
8




can deduce that all the Ni satellites in the compounds are intrinsic and localized at the same Ni
atom. This confirms the nature of the XPS satellites as studied theoretically within the Hubbard
model.

It is well understood that the asymmetry of transition-metal XPS lineshapes arises from
excitations of electron-hole pairs at Ep, and that the severity of the asymmetry increases with the
local joint DOS for electron-hole pair excitations.3® The Ni 2p lines for the compounds studied
here are more symmetric than those for elemental Ni, which provides an independent confirmation
of the decrease of n(Ep) for the intermetallics. Since the Ni 2py, satellite has a multiplet structure
and some of its components are very close to the main 2p;, line, a quantative analysis of the line
asymmetry is difficult. The overlap of the Ni 2p3, line and its satellite causes the apparent energy
separation between them to be smaller than that of the Ni 2p,, line and its satellite 4

In general, XPS core-level chemical shifts can be related to the amount of charge transfer

41 which in the cases studied here is expected to be small because the

among the atoms,
electronegativities of Ni, Ga and In are very similar.!! The chemical environment of the atoms
determines the charge density, which affects the orbital energies of the initial-state electrons as well
as the relaxation energies of the final state, owing to the response of the conduction electrons to the
hole created by the photoemission process. In the compounds studied in this paper, no large
chemical shifts were found. This is not surprising, since the charge transfer is usually small in
intermetallic compounds,7 and the opposing effects of charge transfer and relaxation nearly

canccl.42




V. CONCLUSIONS

XPS VB and core-level spectra of nine Ni-Ga and Ni-In intermetallic compounds of
various stoichiometric compositions have been investigated. Asthe Ni concentration decreases, a
slight filling of the Ni d-band is supported by the following:

(i) the VB peak moves to higher BE;
(ii) the intensities of the satellites of the VB and the Ni 2p;, XPS peaks decrease and the
separations from the main pexk increase; and

(ii1) the Ni2p;, XPS core peak becomes less asymmetric.

However, the XPS data from this work show that compound formation with Ga or In
fills the Ni 3d-band only partially, since the Ni 2p satellite was always observed and the decrease
of the satellite intensity from elemental Ni to the Ni comipounds was smooth. To prove that there
is d-character in the unoccupied states, which was proposed by Hillebrecht ez al” 1o interpret their
XPS data of NiAl, high-resolution inverse-photoemission studies on the Ni-metalloid compounds

may be helpful.
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Table I.  Valence-band properties in Ni-Ga and Ni-In intermetallic compounds

(all values in eV with respect to the Fermi energy).

Compound Peak BE® FWHM’ Satellite BE®
Ni 1.0 3.08 5.9
Ni,Ga 1.0 2.04

Ni;Ga, 1.2 3.16 5.8
NiGa 1.2 3.19 5.9
Ni;Gag 1.2 3.14 d
Ni,Ga, 1.2 3.13 d
NisIn 1.0 3.27 5.9
Nijslng 1.0 3.2 5.4
Niln 1.0 3.2 5.4
Ni,in, 1.3 3.9 d

a. Uncertainty 30.2 eV
b. Uncertainty 0.4 eV
¢. Uncertainty 20.6 eV
d. Satellite too weak for reliable estimate
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Table II.  Binding energies of Ni 2p,, , 2p3,, levels and satellites in Ni-Ga and Ni-In
intermetallic compounds (in eV).

2p;, BE®  AE® IS 2p,» BE® AE Ly ° Chemical
shift”

Ni 852.8 5.4 18.7 870.1 4.4 24.0
Ni;Ga  852.8 5.9 16.6 870.1 4.6 223 0
Ni;Ga, 852.7 5.7 17.9 870.0 4.8 26.3 -0.1
NiGa 852.6 6.2 16.0 869.9 4.9 27.2 -0.2
Ni;Ga, 8529 6.7 15.3 870.0 52 25.4 0
Ni,Ga; 853.0 6.7 14.4 870.2 4.9 25.0 +0.1
NisIn 852.8 5.6 17.6 870.1 5.1 259 0
Nij3Ing  852.8 5.6 18.1 870.0 4.6 25.0 -0.1
Niln 852.7 6.1 18.7 869.8 52 24.0 -0.2
Ni,ln;  852.8 7.0 11.1 870.0 5.2 229 -0.1
a. Uncertainty *0.2eV.
b. Binding energy difference between main line and satellite;

satellite has larger binding energy. Uncertainty £ 0.4 eV.

c. Satellite intensity as percent of total intensity of main line plus satellite. Uncertainty +2%.
d. BE(intermetallic compound)- BE(Ni), averaged over 2p lines. Uncertainty £ 0.4 eV.
16




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

FIGURE CAPTIONS

XPS VB spectra from the Ni-Ga intermetallic compounds. The intensities of all spectra

have been normalized to the peak maxima.
Same as in Fig. 1 except from the Ni-In intermetallic compounds.

Ni 2p;, XPS spectra from Ni-Ga intermetallic compounds, normalized to constant peak
height and shifted to align the main peaks. The arrows indicated the peak positions of
the 6-¢V satellite.

Same as in Fig. 3 except from the Ni-In intermetallic compounds.

(a) Valence band density of states for NiGa. Circles are the experimental XPS spectra
collected in this study corrected for a smooth background and Al Ka; 4 satellites.

The dashed curve is from the calculation of Fletcher [Ref. 21], and the solid curve
shows the theoretical curve broadened with a Gaussian to simulate the experimental
resolution and lifetime broadening effects (1.4-eV FWHM).

(b) Same as in part (a) except the dashed curve is from the calculation of Kubo and
Wakch {Ref. 23], and the solid curve is the theoretical result after broadening (1.4-ev
FWHM) with a Gaussian.

Valence band density of states for Niln. Circles are the experimental XPS spectra
collected in this study, corrected for a smooth background and Al Ko; 4 satellites.
The dashed curve is from calculations by Colinet et al. [Ref. 24], and the solid curve

represents the theoretical curve Gaussian broadened by 1.4-eV FWHM.
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shows the theoretical curve broadened with a Gaussian to simulate the experimental
resolution and lifetime broadening effects (1.4-eV FWHM).

(b) Same as in part (a) except the dashed curve is from the calculation of Kubo and
Wakch [Ref. 23], and the solid curve is the theoretical result after broadening (1.4-ev
FWHM) with a Gaussian.

Valence band density of states for Niln. Circles are the experimental XPS spectra
collected in this study, corrected for a smooth background and Al Kay; 4 satellites.
The dashed curve is from calculations by Colinet et al. [Ref. 24], and the solid curve

represents the theoretical curve Gaussian broadened by 1.4-eV FWHM.
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